
 

INFORMATION & SECURITY. An International Journal, Vol. 2, 1999, 55-68. 

    

I&S 

AN IMMPDAF SOLUTION TO BENCHMARK  

PROBLEM FOR TRACKING IN CLUTTER  

AND STANDOFF JAMMER 

 Donka ANGELOVA, Emil SEMERDJIEV, Ludmila 
MIHAYLOVA and Xiao RONG-LI 

1. Introduction 

Multiple target tracking is a very important and rapidly developing area. The 

formulation of a clearly defined standard or benchmark problem for evaluation and 

comparison of the various existing algorithms is necessary. Researchers have 

established such a unifying general problem that imposes different and contradictory 

requirements in the face of the first benchmark problem (BP) defined in 
4
 and further 

extended in 
6
. The first benchmark problem considers only aircraft tracking and 

pointing/ scheduling of a phased array radar. The second benchmark problem
6,7

 

involves the presence of False Alarms (FA) and Electronic Countermeasures (ECM) 

and requires radar resources management. The tracking filter performance criterion is 

the minimization of a weighted combination of a radar time and energy at the cost of 

a maximum 4 % tracks’ loss. 

Previous results devoted to this problem have shown that the Interacting Multiple 

Model (IMM) filtering algorithm
8
 is the most efficient and cost-effective tool for 

tracking highly maneuvering targets.
3,9,10

 Additionally the presence of FA and ECM 

requires sophisticated data association approaches such as Probabilistic Data 

Association (PDA) or Multiple Hypothesis Tracking.
3
 

In the present paper a solution to the benchmark problem based on the combined 

IMM estimator and PDA technique is proposed. An IMMPDA tracking filter 

satisfying the benchmark performance criteria is designed. It is realized by using 

appropriate Extended Kalman Filters (EKF) in the IMM configuration, adaptive 

scheme for track formation and adaptive radar beam pointing control in order to 

maximize the revisit interval. 
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The complete solution to the BP requires the development of the neutralizing 

techniques for ECM, in particular against a Standoff Jammer (SOJ). The IMMPDA 

filtering approach has been naturally extended in 
11

 to accomplish this task. When the 

jammer influence is taken into account, the detection threshold and the radar 

waveform are adaptively selected to ensure a constant false alarm rate and a 

predetermined target detection probability. This methodology is implemented in the 

work.  

The paper is organized as follows. Section 2 concisely summarizes the idea of the 

IMMPDA filtering approach to hybrid system estimation. In Section 3, the concrete 

implementation of the IMMPDA filter for BP solution is described. The SOJ 

neutralizing technique is briefly described in Section 4 and the simulation results are 

given in Section 5. 

2. IMMPDA Filtering of Hybrid Systems 

The behavior of a maneuvering target can be adequately described in the terminology 

of the stochastic hybrid systems. The base state vector x k Rnx( )   of the discrete 

hybrid system  

 x k f M k x k G M k v k M k( ) ( ( ), ( )) [ ] ( , ( ))   1 1   (1) 

 z k h M k x k w k M k k( ) ( ( ), ) ( , ( )), , , ...   1 2   (2) 

is estimated, where z k Rnz( )   is the measurement vector, v k Rnx( )  and 

w k Rnz( )   are respectively the system and measurement noises, assumed to be 

white and mutually uncorrelated, with zero means and variances, respectively Q k( )  

and R k( ) . The system (1)-(2) at time k is among r possible modal states (models), 

depending on the parameter  M k r( ) , , , 12  , where M k i( )   denotes that the 

i-th system mode is in effect during the sampling interval  T  ending at time k. The 

mode sequence  M k
k

( )
, ,1 2 

 is assumed to be a Markov chain with known initial 

mode  probabilities  i P M i ( )0  and transitional probabilities 

 p P M k j M k iij    ( ) / ( )1 , i j M,  , where P{.} is the notation for 

probability .  

In the presence of clutter several measurements are received from the sensor at time 

k, i.e.     
 

Z k z ki i

m k


1
. The aim of the hybrid estimation is to provide the system 

state and modal state estimates on the basis of the cumulative set of measurements 

  Z Z kk

k

k


1
. In general, suboptimal Bayesian procedures are applied and the 
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final estimate is a weighted sum of the estimates generated by r working in parallel 

Kalman filters. In the absence of model uncertainty, the single model minimum 

variance estimate of the state is computed by the PDA filter
1
: 

( / ) [ ( )| ( ), ] { ( ), }
( )

x k k E x k k Z P k Z
i

m k

i
k

i
k

 0
   

where i k( )  is the event that z ki ( )  is the correct measurement from the target at k 

and 0 ( )k - the event that none of the measurements is correct. E{.} is the 

mathematical expectation operator. When both model uncertainty and measurement 

origin uncertainty are present, the state estimate is given within the framework of the 

IMM filtering approach by the total probability theorem: 

( / ) { [ ( )| ( ), , ]
( )

x k k E x k k M Zii

m k

j
k

j

r


  
01  P k M Z P M Zi j

k
j

k{ ( )| , }} |  

or              ( / )  ( / ) ( )x k k x k k kj
jj

r  1   

where  ( / )x k kj
 is the output of the j-th PDA filter based on the j-th model and 

 j j
kk P M Z( ) { | } ,  j=1,…,r   is the conditional posterior probability of mode j. 

The associated with the estimate error covariance P k k( / ) takes into account the 

effect of the model  and measurement origin uncertainties.  

3. IMMPDA Filter for BP Solution 

A number of mutually connected tasks for precise target tracking are posed in the 

benchmark formulation.
6
 Their optimum solution minimizes both the radar time and 

energy. The tracking algorithm involves track formation and maintenance, as well as 

the choice of target revisit interval. One solution to these tracking problems is 

presented here. 

The IMMPDA filter is an algorithm for tracking that can realize simultaneously track 

formation and maintenance. It provides a quantitative assessments for track 

termination and tracking capability in clutter. In the present work IMMPDA filter is 

implemented only for track maintenance. The track termination is determined here 

according to the criterion for lost tracks suggested in 
7
. A simplified version of track 

formation is accomplished in view of the specific benchmark problem features. As a 

result the computational load and the radar energy are reduced.  
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3.1. Track formation 

The track formation is a difficult task in the presence of FA. On the basis of the 

sequence of measurements with a high signal-to-noise ratio (SNR), a track is formed 

by the Least-Squares (LS) method. This technique provides the initial target state 

estimates and the associated covariance matrix. The estimation accuracy, however, 

greatly depends on the target ranges which vary from 20 to 100 km in the considered 

benchmark trajectories. For this reason the number of the measurements and sampling 

intervals in the LS procedure are determined according to the measured range to the 

target. In addition, the highest energy waveform is used for the remote fast targets. 

3.2. Track maintenance 

The suitable choice of motion models, covering well the whole range of target flight 

modes, is the first important task in the IMMPDA filter design. The hardest target 

maneuvers require lateral accelerations up to 7 g and longitudinal accelerations up to 

2 g. The targets maneuver mainly through turns with the highest intensity (7 g). That 

is why it is proposed here a nonlinear approximate turn model to be used for the 

maneuvering segments.
2
 As the angular rate of the turns is not known and varies in a 

wide range, it is included in the state vector and is estimated by the filter.  

The following set of models is suggested for the IMM track maintenance algorithm:  

a)  No target model ( M1 ) takes into account an undetectable or “false” 

target. It is usually selected as a second order model
1
 with low noise level, 

corresponding to the uniform motion, with a target detection probability PD  0 . Its 

posterior mode probability can be used as a criterion for track termination. According 

to (1), f M k x k f M x k Fx[ ( ), ( )] [ , ( )]   1 11 , where the state space vector 

x x x y y z z T [ , , , , ,]  contains the target positions and velocities in a Cartesian 

coordinate frame and the matrix F has the form described in 
1 ( pp. 228)

. 

b)  A second order model ( M2 ) considers the nearly constant velocity (CV) 

motion of a nonmaneuvering target. It is usually selected with low noise level and 

PD  0 , given by the target’s expected SNR. For the state space vector 

x x x y y z z T [ , , , , ,] , the CV target motion model is linear. According to (1),  

f M k x k f M x k Fx[ ( ), ( )] [ , ( )]   1 12 , where the matrix F is the same as in 

a). 

c)  A maneuver model ( M 3 ), ( PD  0 ) takes into account the on-going 

maneuvers. It is a nonlinear coordinated turn model
2
 with unknown angular rate  , 

incorporated into the state vector x x x y y z z T [ , , , , ,, ] . According to the eq. (1) 

f M x k f x[ , ( )] ( )3 1  , where  
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          f x f x f y f z fT T T T
T

 1 2 3 4  , 

 f x x Tx
T

y x Ty
T

x1

2 2
2

2 2
    








  ,      ,    

 f y y Ty
T

x y Tx
T

y2

2 2
2

2 2
    








  ,       

   f z z Tz z3   ,  ,                                                  f 4   . 

d)  A maneuver start / termination model  ( M4 ) ( PD  0 ) for transitional 

flight segments (between constant speed and turns), necessary for tracking highly 

maneuvering targets. It is selected as a second order model with a high level of noise:  

f M k x k f M x k Fx[ ( ), ( )] [ , ( )]   1 14 , where x x x y y z z T [ , , , , ,]  and the 

transition matrix F  is the same as in the models a) and b). 

The second task of the IMMPDA filter design comprises the selection of prior 

parameters: the process noise variance and the Markovian transition matrix. In view 

of the dynamics of the simulated in the BP targets, the standard deviations of the 

process noise components for the four models are chosen as:  

  M mv1
2

1
28: . / sec ;                                 M mv2

2

2
28: . / sec ;    

  
  M

abs y m

abs x m

m

rad

v x

v y

v z

v

3

2

2

2

3

3

3

3

10 70

10 70

15

0 064

:

max , min (  ), / sec

max , min (  ), / sec

/ sec

. / sec

 

 



 

 





















         

 M T mv4
2

4
50 70: min , / sec  ,  
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where  x y    and  y x   are the accelerations in the “coordinated turn” model. 

The matrix G M k G[ ( )]  from (1) has the usual form
1
 in the four models.  

The elements of the transition matrix can be chosen as follows
2
: 

p T
T if j i

p p T if j iij

i

ij ii

( )
exp ( / )

[ ( )]


 

 







1
 

where  i is the expected sojourn time of the i-th mode. In the present IMM 

implementation, however, the following constant values are assigned to the transition 

probabilities in order to reduce the computational time: 

 p 



















0 94 0 02 0 02 0 02

0 02 083 013 0 02

0 02 0 09 086 0 03

0 02 0 08 0 20 0 70

. . . .

. . . .

. . . .

. . . .

.  

The initial mode probabilities are set to :  p p p p1
0

2
0

3
0

4
001 03   . ; . ;  

3.3. Measurement model 

Since the radar measurements are received in a spherical coordinate system, the 

measurement vector z comprises the range r, the bearing b and elevation e angles, i.e. 

 z r b e
T

 . The measurement equation (2) has the form: 

 h x x y z
y

x

z

x y

T

  
















 2 2 2 1 1

2 2
, tan , tan . 

The nonlinearity in the relationships f x( ) and h x( )  imposes the Extended Kalman 

Filters application in the IMM configuration.  

3.4. Adaptive sampling 

An adaptive computation of the sampling interval is needed when the radar resources 

have to be saved. It is achieved by using a short sampling interval during maneuvers 

and a long one during nonmaneuvering trajectory segments. Here, the sampling 

interval selection scheme, suggested in 
11

, is adopted:  

 a set   of  fixed sampling intervals T is determined; 
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 for the largest T, the predicted positions and innovation covariances from the 

IMM filters are combined, by using IMM predicted mode probabilities; 

 the combined innovation standard deviations  k
b

,  k

e
 in bearing  and elevation  

are compared with the antenna beamwidth in bearing Bk
b

 and elevation Bk
e

, 

respectively: 

 k
b   Bk

b
/ Kb   and    k

e
    Bk

e
 / Ke , 

where Kb  and Ke  are threshold parameters; 

 if any of these angle deviations exceeds the threshold, the test is repeated for the 

next shorter T; 

 if no measurements are received, the sampling interval T is assumed to be equal 

to 0.1 sec. 

In our implementation the following set of sampling intervals is accepted: 

   01 05 09 13 17 21 25 2 9 33 37. , . , . , . , . , . , . , . , . , . . 

At first the threshold Kb = Ke = K  is selected equal to K  4 2. . If the target is not 

detected, the threshold K  is augmented to the value of 6. During the next subsequent 

scans, the sampling interval increases to its maximum value T  37.  sec, (according  

to the described above logic), and then K  is returned to its ordinary base value of 

4.5. 

4. Neutralizing the SOJ 

The neutralizing technique for The SOJ, presented in
11

, is realized in the paper. The 

SOJ motion parameters are estimated by EKF based on angles only measurements, 

received at the radar in passive mode. The jammer tracker using azimuth and 

elevation angles, their derivatives and a 2.0 sec update rate is implemented
7
 to predict 

the jammer position. The predicted estimate of the jammer power level is used for an 

adaptive selection of the detection threshold in order to maintain a constant false 

alarm rate. To maintain the predetermined target detection probability, the radar 

waveform is also adaptively selected by an additional assessment of the target radar 

cross section.
11
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5. Simulation results 

The algorithm performance is evaluated over six standard BP test scenarios.
7
 The 

well known criteria for filter performance are used: the energy and radar time costs,
7
 

position and velocity root-mean-square errors (RMSE), computational requirements, 

percentage of lost tracks.
7
 

The number of tracks lost is a key performance indicator for a filter, operating in a 

cluttered environment and ECM. The main measures of performance, concerning the 

energy and radar time costs have the form
7
: 

C E T ii ave i ave      , , ; ;12 10 101
3

2
5
, 

where Eave  is the average radar energy per second, Tave  is the average radar time 

per second and  i  is a given weighting parameter.  

The results obtained for 200 Monte Carlo runs in the presence of FA and SOJ are 

shown in Table 1. The average values of the parameters C1 and C2 , computed over 

the six scenarios by taking into account the respective parameters of target 1 two 

times (as is required in 
7
), are given in the last row of Table 1. It can be seen from the 

results that the realized IMMPDA algorithm version satisfies the BP requirements for 

all six target scenarios. 

Figures 1 through 6 illustrate the results obtained for the most difficult scenario 6. 

The waveform adaptation, corresponding to the selected detection threshold can be 

seen in Figure 1. The waveform peaks follow the changes in the acceleration 

magnitude and the SOJ influence. The sampling interval (Figure 2) is larger during 

nonmaneuvering phases of motion (  3 36.  sec) in comparison to the maneuvering 

periods of flight ( 15.  sec). Therefore, the IMM innovation standard deviations give 

a good measure for the confidence of the predicted state estimates. The evolution of 

the IMM mode probabilities for one run is presented in Figure 5. The posterior mode 

probabilities correctly identify the true system mode for all target scenarios. The  

rapid response to the changes in the target behavior ensures acceptable RMS Errors. 

The average position and velocity RMSE are shown in Figures 3 and 4, respectively. 

The peak RMS position errors do not exceed 500 m; the top velocity RMSE are of 

the order of 250 m/s. The average estimated value of the angular rate, which is a state 

component of the maneuvering model, is presented in Figure 6. It is obvious from the 

simulation results that the performance of the proposed tracking algorithm is 

comparable to the performance of the algorithm derived in 
11

. The average sampling 

interval (2.85 s) and the average power (8.24 W) are approximately the same as the 

respective parameters (2.71 s and 8.6 W) in 
11

.  
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Table 1: IMMPDAF performance in the presence of FA and SOJ 

Target Sample 

Period   

(s) 

Ave. 

Power (w) 

Pos. 

RMSE 

(m) 

Vel. 

RMSE 

(m/s) 

Cost 

C1  

Cost 

C2  

Lost 

Tracks 

(%) 

1 2.91 7.28 115.0 50.27 7.63 41.65 0 

2 2.88 6.16 100.3 52.18 6.51 40.84 0 

3 2.87 10.36 148.7 79.15 10.71 45.18 0 

4 2.91 3.07 45.81 36.55 3.42 37.37 0 

5 2.77 15.91 171.4 74.49 16.27 51.94 0 

6 2.71 7.62 114.8 72.44 7.99 44.48 1 

Ave. 2.85 8.24 - - 8.60 43.31 - 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4  
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Figure 5 



66 An IMMPDA Solution to Benchmark Problem  

0 20 40 60 80 100 120 140 160 180

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Time, sec

A
v
e

ra
g

e
 A

n
g

u
la

r 
R

a
te

 E
s
ti
m

a
te

, 
ra

d
/s

 

Figure 6  

6. Conclusions 

Preliminary results of an ongoing study are reported in the paper. An algorithm is 

proposed for radar management and tracking of maneuvering aircraft in the presence 

of clutter and Standoff Jammer. It is based on the advanced IMMPDA filtering 

approach for hybrid system estimation. The performance of the designed algorithm is 

evaluated by Monte Carlo simulations. Results obtained over six standard benchmark 

test scenarios are given. They show that the tracking filter characteristics satisfy the 

benchmark restrictions and they are close to the performance of the algorithms, 

recently published in the literature. 

The further investigation comprises: 

 implementation of the idea of the optimal initialization, described in 
12

; 

 replacement of the PDAF with IPDAF for track formation, confirmation and 

termination; 

 replacement of the PDAF with Probabilistic Strongest Neighbor Filter or 

Interacting 2-model PDAF
5
; 

 implementation of the Decomposition and Fusion Method for handling Range 

Gate Pull-Off ECM. 
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