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ORDERED DSmT AND APPLICATION TO THE
DEFINITION OF CONTINUOUS DSm MODELS

Fréderic DAMBREVILLE

Abstract: When implementing the DSmT, a difficulty may arise from the pos-
sible huge dimension of hyperpower sets, which are indeed free seactdow-
ever, it is possible to reduce the dimension of these structures by invébgraal
constraints. In this paper, the logical constraints will be related to a pnediedir-
der over the logical propositions. The use of such orders and thaltingslogical
constraints will ensure a great reduction of the model complexity. Sasafits will

be applied to the definition of continuous DSm models. In particular, a singlifie
description of the continuous impreciseness is considered, based @tisgmess
intervals of the sensors. From this viewpoint, it is possible to manage tlimeon
dictions between continuous sensors in a DSmT manner, while the compiéxity
the model stays handlable.

Keywords: Evidence Theory, Continuous DSmT, Probability, Boolean Algebra,
Hyperpower set

1 Introduction

Recent advances[1] in the Dezert Smarandache Theory havenghat this theory
was able to handle the contradiction between propositimagjuite flexible way. This
new theory has been already applied in different domaigs;

e Data asociation in target tracking [2],
e Environmental prediction [3] .

Although free DSm models are defined over hyperpower setighvdizes evolve ex-
ponentially with the number oditomicpropositions, it appears that the manipulation
of the fusion rule is still manageable for practical probder@asonnably well shaped.
Moreover, the hybrid DSm models are of lesser complexity.

If DSmT works well for discret spaces, the manipulation afitt;ous DSm models is
still an unknown. A question first arisewhat could be an hyperpower set for a contin-
uous DSm model3uch first issue does not arises so dramatically in Dempsizies
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Theory or for Transfer Belief Models[4]. In DST, a contingoproposition could just
be a measurable subset. On the other hand, a free DSm maiiletddever an hyper-
power set, will imply that any pair of propositions will hagenon empty intersection.
This is desappointing, since the notion @dint (a minimal non empty proposition)
does not exist anymore in an hyperpower set.

But even if it is possible to define a continuous propositionadel, the manipulation
of continuous basic belief assignment is still an issué[5][n [5], Ristic and Smets
proposed a restriction of the bba to intervalsli®f It was then possible to derive a
mathematical relation between a continuous bba densitytsuie! function.

In this paper, the construction of continuous DSm modelsap@sed. This construc-
tion is based on a constrained model, where the logical am$rare implied by the
definition of an order relation over the propositions.

A one-dimension DSm model will be implemented, where thenitédin of the basic

belief assignment relies ongeneralized notion of intervalsAlthough this construc-
tion has been fulfilled on a different ground, it shares souamprizing similarities with

Ristic and Smets viewpoint. As in [5], the bba will be seen assity defined over a
2-dimension measurable space. We will be able to derive #iefBunction from the

basic belief assignment, by applying an integral compomatAt last, the conjunctive
fusion operatorp, is derived by a rather simple integral computation.

Section 2 makes a quick introduction of the Dezert Smararelddeory. Section 3
is about ordered DSm models. In section 4, a continuous DSdehiwdefined. This
method is restricted to only one dimension. The related etatjipn methods are de-
tailed. In section 5, our algorithmic implementation is désed and an example of
computation is given. The paper is then concluded.

2 A short introduction to the DSMT

2.1 Basis

The theory and its meaning are widely explained in [1].

The Dezert Smarandache Thedpglongs to the family oEvidence TheoriesAs the
Dempster Shafer Thedig][8] or the Transferable Belief Moddl], the DSmMT is a
framework for fusing belief informations, originating froindependent sensors. Free
DSm models are defined over Hyperpower sets, whiclfidigeopen-world extensions
of sets. It is possible to restrict this full open-world hyipesis by adding propositional
constraints, resulting in the definition of agbrid Dezert Smarandache model

Hyperpower set. Let® = {¢;/i € I} be a set of propositions (finite or infinite).
The hyperpower set ® > is the boolean pre-algebra freely generateddbyand the



60 Ordered DSmT and Application to the Definition of Continuous DSm Models

boolean operatorg. (AND) andV (OR).It does not contains the negatien
Example

<a,b,c>= {a,b,c,a/\b/\c,a\/b\/c,a/\b,b/\c,c/\a,
aVbbVeeVa,(anb)Ve (bAc)Va,(cANa)Vb,
(aVb)Ac,(bVe)Aa,(cVa)Ab,(aAb)V (bAc)V (cha)}

It is easy to verify that this set is left unchanged by any @ggibn of the operators
andV. For example:

(anb)A((bAc)Va)=(aAbAbAC)V(aAbAa)=aNlb.

Definition The relationc is defined ovex ® > by:

Vo, €< ®>, ¢Cih <2 dAY=0¢.

Dezert Smarandache Model. Assume thatb is a finite set. A Dezert Smarandache
model (DSmm) is a paif®, m), where® is a set of propositions and thasic belief
assignmentn is a non negatively valued function defined ove® > such that:

>, me)=1.

pE<P>

Belief Function. Assume thatd is a finite set. The belief functioBel related to a
bbam is defined by:

Vo e<® >, Bel(g) = > m(¥). (1)

PYeELP>:1PCo

The equation (1) is invertible:

Vo e< @ > m(g) =Bel(g) — > m(¥).

PE<D>HCh

Fusion rule. Assume that is a finite set. For a given univerde, and two basic be-
lief assignmentsn; andms, associated to independent sensors, the fused basic belief
assignment isn; @ mo , defined by:

my D m2(¢> = Z mq (’(/Jl>m2('(/)2> . (2)
Y1, €ESDP>1p Apa=¢



Fréderic Dambreville 61

2.2 Some extensions

Between sets and hyperpower sets.Sets and hyperpower sets are tightly related
structures. First at all, a set (with U operators and complement) is a boolean algebra,
while an hyperpower set is a free boolean pre-algebra. ler¢hat a free boolean
pre-algebra could be completed to a boolean algebra, sahagperpower set could
be seen as a substructure of a set. More precisely > cC B(®) whereB(®) is

the free boolean algebra generateddby In particular, whenb is finite, the boolean
algebraB(®) is generated by:

{/\ei/wel, ez‘E{fbiﬁ@}} .
il

Followingly, B(®) is isomorph to a set structure 2f*4(/) elements, in the finite case.

Conversely, a set could be interpreted a®astrained pre-algebraie. a “constrained
hyperpower set”. More precisely, whdnis a finite set, this set is isomorph to the
boolean pre-algebra generateddyA andV, and verifying the logical constraints:

v@,jGI,Z#j:>¢2A¢]:J_

In this construction, the empty propositidnhas been implicitely defined. However,

it is possible (see later) to build constrained pre-algetithout the adjunction of the
empty propositionL .

One advantage of constrained boolean pre-algebra is tbwtatte less complex and
“fractalized” than a simple hyperpower set. Jean DezertRlodentin Smarandache
have extended the DSmT fusion operator so has to involve iadydk pre-algebra (hy-
brid DSmT [1]). In this presentation, we will only focuse oregalgebra constrained
without adjunction ofl , and in this case, the fusion operator of the free DSmT is kept
unchanged.

Partially open world without L. Letl’ c< & > x < & > and define the pre-
algebra< ® > generated by, A, vV and constrained by:

V() el =1

Example Let consider again the cage = {a,b,c}. But now, let us introduce the
constraintsa A b = a A ¢ = b A ¢, which means (for example) using a dét=
{(anbanc),(ahc,bAc)}. Thenitisdeduced A\b=aAc=bAc=aAbAc.

It follows (a Ab)Ve=c (bAc)Va=aand(cAa)Vb=> Itisalsodeduced
(avb)Ac=((bVe)Aa=(cVa)ANb=(aAb)V (bAc)V(cAa)=aAbAc.By
discarding these cases from the free hyperpowert b, ¢ >, it is deduced:

< a,b,c>pr= {a,b,c,a/\b/\c,a\/b\/c,a\/b,bVC,c\/a}

1When® is infinite, this result requires “infinitg-ing.”
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It is noticed that< ® >r is left unchanged by any application of the operatomnd
V (and does not contains the external propositign When® is finite, the definition
of bbam, belief Bel and fusions is thus kept unchanged.

e A basic belief assignment is a non negatively valued function defined over

< ® >r such that:
Y. m@)=1.
PESDP>r

e The belief functionBel related to a bban is defined by:

Vo €< @ >p, Bel(g) = > m(y).

PELP>ripCo

e Being given two basic belief assignments andm., the fused basic belief
assignmenin; & my is defined by:

my ® ma(d) = > m1(1)ma(ie) .

P1,h2 €E<P>Tip1 Apa =0

These extended definitions will be applied subsequently.

3 Ordered DSm model

In order to reduce the complexity of the free DSm model, itdsessary to introduce
logical constraints which will lower the size of the pre-gtjga. Such constraints may
appear clearly in the hypotheses of the problem. In this, casestraints come naturally
and approximations may not be required. However, when theeirie too complex
and there are no explicit constraints for reducing this demity, it is necessary to
approximate the model by introducing some new constraifitgo rules should be
applied then:

¢ Only weaken informatiorfs do not produce information from nothing,
e minimize the information weakening.

First point garantees that the approximation does notdnuire false information. But
some significant informationgg. contradictions) are possibly missed. This drawback
should be avoided by second point.

In order to build a good approximation policy, some extekmawledge, like distance
or order relation among the propositions could be used.rigkethiese relations will be
assumed some kind of distance between the informatiose are the informations
distant, more are their conjunctive combination valuable.

2Typically, a constraint likeh A Anp = ¢ A+ will weaken the information, by erasingfrom ¢ A An .
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3.1 Ordered atomic propositions

Let (P, <) be an ordered set of propositions. This order relation israssl to describe
the relative distance between the information. For exapthkerelationp < ¢ < n
implies that¢ and are closer informations than andn. Thus, the information
contained inp A 7 is stronger than the information containedsin . Of course, this
comparison does not matter when all the information is Keyttyhen approximations
are necessary, it will be useful to be able to choose the biestiation.

Sketchy example. Assume that 3 independent sensors are gigimgeasures about
a continuous parameter, thatisy andz. The parameters, y, z are assumed to be
real values, not of theetIR but of its “pre-algebraic” extension (theoretical issues
will be clarified latef). The fused information could be formalized by the proposit
x Ay Az (inaDSmT viewpoint). What happen if we want to reduce therimfation
by removing a proposition. Do we keepA y, y A z or z A z? This is of course
an information weakening. But it is possible that one infation is better than an
other. At this stage, the order between the valueags = will be involved. Assume for
example thatt < y < z. Itis clear that the propositiom A z indicates a greater
contradiction tham: A y or y A z . Thus, the propositiom A z is the one which should
be kept! The discarding constraint< y < z = x Ay A z = x A z is implied then.

3.2 Associated pre-algebra and complexity.

In regard to the previous example, the pre-algebra assdciatthe ordered proposi-
tions(®, <) is < ® >r, wherel is defined by:

L= {(pAYAn¢AN)/¢,0,nePandp <¢ <n}.

The following property give an approximative bound of theesif < ® >r in the case
of a total order.

Proposition 1 Assume that®, <) is totally ordered. Theng ® >r is a substructure
of the setb? .

proof. Since the order is total, first notice that the added conmgsaire:

Vo, h,m € @, o AP An=min{¢, ¥, n} Amax{¢, ¢, n} .

Now, for any¢ € @, defined by:

¢ = {(@17902) 6@2/@1 §¢§992}

3In particular, as we are working in a pre-algebra) y makes sense and it is possible that y # L
even whene # y.
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It is noteworthy that:

J)ﬂl; = {(<p1,<p2) S @2/@1 < min{¢, ¢} and max{¢, v} < gpg}

and

dNY i = {(p1,92) € D /1 < min{¢, ¥, n} and max{p,v,n} < g2} .

By definingm = min{¢, ¥, n} andM = max{¢,,n}, itis deduced:

dnPNij=mnM.
Let. A C P(®?) be generated bzgvi|¢6¢ with N andu, ie..
A= U { U(‘lgkﬂi]}k)/vh Or, Ui € ‘P} :
n>0 \ k=1

Then, by (3) is defined the mapping:

<Oo>r — A

. no ng n ng 5
o \/ /\ Gkt — U ﬂ k1, wheregy, € ®
k=11l=1 k=11l=1

which is an onto morphism of pre-algebra.

Lemma 1 Assume:

U@ined) c | J@ nv?) . wheregl , ¢ € .

k=1 1=

=

Then:

3)

Vk, 3, min{¢, ¢;} < min{yy, ¥7} and max{¢y, 6} > max{yy, ¢’}

and y y 5 y
Vi, 3L, ¢)Ne; C Ul N7

Proof of lemma. Letk € [1,n].
Definem = min{¢;., ¢2} andM = max{¢s, 7} .

Then holdgm, M) ¢ du),lc N éi implying (m, M) € Uf;l(zﬂ} N 1512) :

Letl be such thatm, M) € ¢} N2 .
Thenm < min{y}, ?} andM > max{}, 9?7} .
Followingly, ¢ N ¢2 C 4 N 2.
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oo

Frommin{¢}, ¢2} < min{y},¥?} andmax{¢}, ¢} > max{},¢?} is also
deduced i A ¢2) A (v} A?) = i A ¢3 (definition ofT') .
This property just means; A ¢7 C 1} A7 . Itis lastly deduced:

Lemma 2 Assume:
n . m ) )
U(Cbllcmd)k - U ENYE) . whereg] , v € P
k=1 =1

Then:

3

\n/ (¢x AOR) C \/(7/11/\77[11)-

From this lemma, it is deduced thatis one to one.
At last — is an isomorphism of pre-algebrand < ® >r is a substructure of

2.

ooo

3.3 General properties of the model

In the next section, the previous construction will be eglehto the continuous case,
ie. (IR, <) . However, a strict logical manipulation of the proposisas not sufficient
and instead a measurable generalization of the model wilsbd. It has been seen that
a proposition o< ® >t could be described as a subsethdf. In this subsection, the
proposition model will be characterized precisely. Thiaretterization will be used
and extended in the next section to the continuous case.

Proposition 2 Let¢p €< & >r.
Thenw (¢) C T, whereT = {(¢,¢) € ®?/¢ <1} .

Proof. Obvious, sinc&/¢ € @, (5 cT.
oog
Definition 1 A subset C ®? is increasingf and only if:

Vg, )€b, V<9, VC=v, (n,¢) b

Letid = {6 C T/fisincreasing be the set of increasing subsets®f Notice
that the intersection or the union of increasing subsetsnareasing subsets, so that
(U,N, V) is a pre-algebra.
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Proposition 3 For any choice ofp, { - (¢)/¢p €< ® >r} CU .
When is finite, i/ = { (¢) /¢ €< ® >p} .

Proof of > . Obvious, since is inceasing for any € & .

Proof of C. Letd € U/ and let(a,b) € 6.
SinceaNb = {(a, 3) € ®*/a < aandp > b} andd is increasing, it follows
anbco. ]
Atlast, 0 = Uy e @00 = (Viupes @ AD)

Notice that\/ , , . a A b is actually defined, sincis finite whend is finite.

ooo

When infinite v-ing are allowed, notice thd# may be considered as a model for
< ® > even ifd is infinite. In the next section, thmntinuougpre-algebra related to
(IR, <) will be modelled by theneasurable increasing subsefs{ (z, y) € IR2/$ <y}.

4 Continuous DSm model

In this section, the case = IR is considered.

Typically, in a continuous model, it will be necessary to lipatate any measurable
proposition, and for example intervals. It comes out thastatervals could not be
obtained by a finite logical combinaison of the atomic prajmss, but rather by infi-
nite combinations. For example, considering the set faemlit is obtaineda, b] =
Usela,p {7}, which suggests the definition of the infinite disjunctiog,’(, , «". It

is known that infinite disjunctions are difficult to handleatogic. It is better to manip-
ulate the models directly. The prealgebra to be construttedld verify the property
r<y<z=axAyAz=uzxAz.Asdiscussed previously and since infinitary dis-
junctions are allowed, a model for such algebra are the mablsLincreasing subsets.

4.1 Measurable increasing subsets

A measurable subset c IR? is a measurable increasing subset if:

v(x’y)€A7 J"Sy7
V(z,y) € A, Va<x,Vb>y, (a,b) € A.

The set of measurable increasing subsets is dedated
Example. Let f : IR — IR be a non decreasing measurable mapping such that

f(z) > zforanyz € R. The sef{ (z,y) € IR*/f(x) < y} is a measurable increasing
subset.
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“Points”.  For anyx € IR, the measurable increasing subsét defined by:
j:{(a,b)EIR2/a§x§b}.

The setz is of course a model for the point € IR within the pre-algebra (refer to
section 3).

Generalized intervals. A particular class of increasing subsets, the generalized i
tervals, will be useful in the sequel.

For anyx € IR, the measurable setsand: are then defined by:

i ={(a,b) eR* /a <bandz < b},
f:{(a,b)e]RQ/agbandagx}.

The following properties are derived:

f=xndé,x= |J # and 2= |J 2

z€[x,+oo] z€|—o00,z]

Moreover, for anyr, y such that: < y, it comes:

As a conclusion, the sét,  andx N ¢ (with = < y) are the respective models for the
intervals|z, +-o0[, | — oo, 2] and[z, y] within the pre-algebra. Naturally, the accents
and’are used respectively for opening and closing the intervals

At last, the setr N 4, wherez,y € IR are not constrained, constitutes a generalized
definition of the notion of interval. In the case< y, it works like “classical” inter-
val, but in the case > y, it is obtained a new class of intervals with negative width.
Whateverx N ¢ comes with a non empty inner, and may have a non zero measure.
The widtho = 45+ of the intervalz Ny could be considered as a measure of contradic-
tion associated with this proposition, while its centes= % should be considered
as its median value. The interpretation of the measure df@diction is left to the
human. Typically, a possible interpretation could be:

e ¢ < 0 means contradictory informations,
e § = 0 means exact informations,

e 0 > (0 means imprecise informations.
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It is also noteworthy that the set of generalized intervals
I={xng/xz,y € R}

is left unchanged by the operatar, as seen in the following proposition 4 :

Proposition 4 (Stability) Letxy,z2,y1,72 € IR.
Definer = max{x,z2} andy = min{y;,y2} .
Then(.@l ﬂy’l) n (iQ ﬂyg) =2 ﬂgj .

Proof is obvious.

This last property make possible the definition of basicdfelssignment over gener-
alized intervals only. This assumption is clearly necessaorder to reduce the com-
plexity of the evidence modelling. Behind this assumpt®the idea that a continuous
measure is described by an imprecision/contradictionratdlie sensored value. Such
hypothesis has been made by Smets and Risic[5]. From nowlldhealefined bba
will be zeroed outsid€. Now, sinceZ is invariant byn, it is implied that all the bba
which will be manipulated, from sensors or after fusion) W zeroed outsidé. This
ma;tkes the basic belief assignments equivalent to a dengtytloe 2-dimension space
R”.

4.2 Definition and manipulation of the belief
The definitions of bba, belief and fusion result directlynfr@ection 2, but of course

the bba becomes density and the summations are replacetehyeaitions.

Basic Belief Assignment. As discussed previously, it is hypothesized that the mea-
sures are characterized by a precision interval aroundetigosed values. In addition,
there is an unknown about the measure which is translatedaibgsic belief assign-
ment over the precision intervals.

According to this hypotheses, a bba will be a non negativalyed functionn defined
overl , zeroed outsid& (set of generalized intervals), and such that:

/ m(a‘cﬂy’)dmdy: 1.
z,y€R

Belief function. The function of beliefBel, is defined for any measurable proposi-
tion ¢ € U by:
Bel (¢) = / m (2 Ny)dzdy .
TNYCo

In particular, for a generalized intervaln ¢ :

oo ry
Bel (xﬁy) :/ / m(ﬁﬁ@)dudv.
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Fusion rule. Being given two basic belief assignmemts andm., the fused basic
belief assignment; © my is defined by the curviline integral:

my ®@ma(ENy) = / my(¢)ma(v) dC .
C={(¢,1)/pNy=2Ny}

Now, from hypothesis it is assumed that is positive only for intervals of the form
Z; N y;. Proposition 4 implies:

xr = max{zry, 22} ,

1Ny N Ny = Ny where .
y = min{y:,y2} .

It is then deduced:

x +oo
mi G}mg(iﬂgj) = / / mi (iﬂy’)mg(ﬁtg ﬂgjg)d:cgdyg
xT +oo B
+/ / ml(fcl Ogjl)mg(iﬁgj)dxldyl
_:EOO y+oo
+/ / ml(i’l ﬂy’)mg(fcﬁy'g)dzldyg
—oo Jy

xT +oo
+/ / ma (i‘ N gjl)mg (i‘g N y/)ddigdyl .
—c0 Jy

In particular, it is now justified that a bba, from sensorsusefd, will always be zeroed
outsideZ .

5 Implementation of the continuous model

Setting. In this implementation, the study has been restricted tarttesval [—1, 1]
instead oflR. The previous results still hold by trunctating overl, 1] . In particu-
lar, any bbam is zeroed outsid€’, = {¥ Ny/z,y € [-1,1]} and its related belief
function is defined by:

1 y
Bel (xﬁy) :/ / m(ﬂﬂzﬁ)dudv7
u=x Juv=—1



70 Ordered DSmT and Application to the Definition of Continuous DSm Models

for any generalized interval 6f! , . The bba resulting of the fusion of two bbag
andms is defined by:

x

my @mz(.’i‘ﬂy) :/
—1
T 1
+/ / m1(i‘1 ﬂyl)mg(ﬁfﬂg)dl‘ldyl
—1Jy
T 1
+/ / m1(i‘1 ﬂy/)mQ(jJﬂy’g)dl‘ldyQ
—1Jy

T 1
+/ / ma (i’ n gjl)mg (i’g ﬂy)dxgdyl .
—1Jy

1
/ mi (jﬁ n gj)mg (i‘g N yg)d$2dy2
Y

Method. A theorical computation of these integrals seems uneasgpfairoximation
of the densities and of the integrals has been considerete ptecisely, the densities
have been approximitated by means of 2-dimengtiebyshev polynomialavhich
have several good properties:

e The approximation grows quickly with the degree of the polyial, without
oscilliation phenomena,

e The Chebyshev transform is quite related to the fouriersfiaam, which makes
the parameters of the polynoms really quickly computablenaans of a Fast
Fourier Transform,

e Integration is easy to compute.

In our tests, we have chosen a Chebyshev approximation ofel&28 x 128, which
is more than sufficient for an almost exact computation.

Example. Two bbam, andms have been constructed by normalizing the following
functionsmm, andmms defined ovef—1,1]2:

mmgy (1’ N y) = exp(f(x +1)% - yz)
and
mms (2 NY) = exp(—z® — (y — 1)%) .

The fused bban; ©m4 and the respective belief function, b, b, ®bs have been com-
puted. This computation has been instantaneous. All fansthave been represented
in the figures 1 to 8.
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pre-bbamm;

mmy

1
0.8
0.6
0.4
0.2

Figure 1: Non normalized bbam,

Interpretation.  The bbam, is a density centered around the interjsal, 0], while
mo IS a density centered arouf@ 1] . This explains why the beliéf; increases faster
from the interval—1, —1] to [—1, 1] than from the intervall, 1] to [—1, 1] . And this
property is of course inverted fés .

A comparison of the fused bba; @& my with the initial bbasn; andmy makes ap-
parent a global forward move of the density. This just meaas the fused bba is
put on intervals with less imprecision, and possibly on sémtervals with negative
width (ie. associated with a degree of contradiction). Of course tisen@thing sur-
prising here, since information fusion will reduce imps#on and produce some con-
tradiction! It is also noticed that the fused bba is centenexlind the intervalo, 0] .
This result matches perfectly the fact that andms , and their related sensors, put
more belief respectively over the interal1, 0] and the intervalo, 1] ; and of course
[-1,0]N[0,1] = [0,0].

6 Conclusion

A problem of continuous information fusion has been ingedgd and solved in the
DSmT paradigm. The conceived method is versatile and istaldpecify the typical

various degrees of contradiction of a DSm model. It has begteimented efficiently
for a bounded continuous information. The work is still grestive, but applications
should be done in the future on localization problems. As tine, the concept is
restricted to one-dimension informations. However, waks now accomplished in
order to extend the method to multiple-dimensions domains.
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Figure 2: Non normalized bbam.
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Figure 3: Basic belief assignmennt;
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bbam2
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Figure 4: Basic belief assignmenmt;
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Figure 5: Belief functiorb,
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beliefby

2R
2R
DA AT
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Figure 6: Belief functiorb,

bbam; & mo

my @ me

Figure 7: Fused bbau; & mso
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beliefb; @ by

Figure 8: Fused bbl, & by
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