
Published by ProCon Ltd., www.procon.bg, under Creative Commons 4.0 Attribution-

NonCommercial-ShareAlike International license (CC BY-NC-SA 4.0).  
 

Information & Security: An International Journal 

Mphago et al., vol.40: 2, 2018, 189-202 https://doi.org/10.11610/isij.4014   

SELF-ADVERTISING ATTACK SURFACES FOR 

WEB APPLICATION HONEYPOTS: NEW TECH-

NOLOGY TO MANAGING CYBER DISASTERS 

Banyatsang MPHAGO, Dimane MPOELENG, Shedden MASUPE, 

and Oteng TABONA 

Abstract: Honeypots are security tools often used to attract and learn attackers’ meth-

ods or divert their attention to unimportant resources. In order to achieve their goal, 

honeypots need to be identified by the attackers, and this is often the challenge with 

most deployments of honeypots. This paper therefore explores the use of attack surface 

sizes in web application honeypots to self-advertise their honeypots to the attackers. 

PageRank, which is a system that ranks pages on the web through outward link analy-

sis, ranks important pages as seen by their users at the top of the search results. There-

fore, the paper argues that vulnerable pages on the web, thus applications with large at-

tack surface, are also important to attackers. Therefore, if pages are ranked based on 

their importance as seen by their users, pages with large attack surface should rank 

high when attackers search for them. To design a large attack surface, attack surface 

parameters can be strategically placed in a template as different parameters affect the 

attack surface differently when placed in a particular way.  

Keywords: honeypot, attack-surface, PageRank, web application, attack surface pa-

rameters. 

Introduction 

Computer Emergency Response Teams (CERTs) are often a group of experts tasked 

with handling computer security incidents. Once an incident is successfully detected, 

there is a need to respond. One of the biggest challenges response teams face when 

responding to incidents is collecting evidence- thus finding out exactly what hap-

pened. Getting the evidence of what happened during an attack is not only critical to 

finding who did the attack but also how the attacks propagated, and thereby readying 

themselves for future attacks. When a system is compromised, attackers often leave 

some evidence behind, which when analysed can lead to information on who is the 

attacker, how he conducted the attack, and what may have been stolen during the at-

tack. Without this information, CERTs are unable to respond correctly to incidents, 

and this may lead to difficult situations when such attacks occur repeatedly. Howev-



 Self-Advertising Attack Surfaces for Web Application Honeypots 

 

190 

er, analysing the extent of an attack on a live system can be a challenge: evidence can 

be contaminated or deleted when data on the disks and logs gets re-written by the 

system’s processes. To avoid losing evidence and data getting re-written, systems are 

often pulled offline for analysis, and this may also result in loss of business. One pos-

sible way of curbing this problem is through the use of honeypots. The primary goal 

of a honeypot is to be attacked and learn the attack methods, or divert attacks to other 

unimportant resources. 

By analysing the evidence trapped in honeypots, no business is lost, but the valuable 

knowledge on attacks is gained. However, the challenge of using honeypots is that 

often attackers do not find them. This paper proposes self-advertising attack surfaces 

that are able to make our honeypots more visible on the Search Engine Optimization 

(SEO). In the proposed approach, we argue that the size of the attack surface can be 

used as a factor in marketing the honeypots to its targets. In the next sections of the 

paper we would give a brief background of honeypot definitions, and attack surfaces 

in web application honeypots. Then we would present our argument of why the size 

of attack surfaces in web application honeypots can be used as a form of advertising 

honeypots to the attackers. Lastly, we would present our approach of maximizing at-

tack surfaces in web application honeypots through the use of attack surface parame-

ters and then conclude by discussing our findings. 

Background 

A honeypot is tough to define because it is a new and changing technology, and it 

can be involved in different aspects of security such as prevention, detection, and in-

formation gathering.1 It is unique in that it is more a general technology, not solution, 

and does not solve a specific security problem. Instead, it is a highly flexible tool 

with applications in such areas as network forensics and intrusion detection. Some of 

the definitions of honeypots are listed below: 

Definition 1: “a honeypot is a security resource whose value lies in being probed, at-

tacked and compromised.”2  

Definition 2: “a honeypot is a computer which has been configured to some extent to 

seem normal to an attacker, but actually logs and observes what the attacker does.”3 

Definition 3: “a honeypot is a general computing resource whose sole task is to be 

probed, attacked, and compromised, used or accessed in any other unauthorised 

way.”4 

Attack Surfaces in Web Applications 

An attack surface of an application is any possible ways in which an attacker can 

manipulate the application and or possibly cause harm,5 or an amount of application 



 Banyatsang Mphago, Dimane Mpoeleng, Shedden Masupe, and Oteng Tabona  

 

191 

area that is exposed for an attack.6 Thus, attack surface of a system is any system’s 

resource that can be used by an attacker to cause damage to that system or any relat-

ed elements associated to that system. 

Web applications are mostly similar in their concepts: there is a browser that com-

municates with the webserver through the http protocol, and the webserver will in 

turn communicate with its backend systems to produce a response back to the brows-

er. As the communication between the browser, webserver, and backend systems 

takes place, there are several entries and exits points to the web application which ei-

ther directly or indirectly get used/ exposed to the user. These entry and exit points 

are what define the attack surface of that web application. The term attack surface is 

sometimes used literally to refer to the amount of code, functionality, and interfaces 

of a system exposed to attackers.5 In web applications, an attack surface can simply 

be considered as the HTTP boundary (Figure 1) of the server or web application and 

the functionality running behind the server accessible through that http boundary. 

However, client systems, the underlying operating system of the web server, the us-

ers, etc., are also part of the attack surface of the web application. But these parame-

ters require some special privileges, i.e. insider information or root privileges before 

they can be manipulated, and as such would not be discussed in this paper. Rather, 

this paper would only focus its discussion on what is exposed to the user or attacker 

through the HTTP interface, assuming that application has the natural security like 

any normal application. 

The Attack Surface Parameters 

The degree of distribution of a web application, availability of security features, input 

vectors, dynamic creation of pages, cookies, active content, and access control meth-

ods are the parameters that affect the size of an application’s attack surface in either 

direction.5, 6 The degree of distribution reflects the traversing of an application across 

many domains. Cross-domain issues commonly carry vulnerabilities, and distribution 

enables such problems more possible as it needs the system to abide to the same-origin 

 

 

 

Figure 1: Web Application Architecture.5 



 Self-Advertising Attack Surfaces for Web Application Honeypots 

 

192 

policy prescribed by browsers to separate sources of multiple origins.5 Page creation 

method reflects the difference between pages created dynamically on the server side 

by the application and those that are static. Application codes that run on the server-

side are also a common source of vulnerabilities, so applications that use server-side 

technologies such as PHP, ASP, or JSP will have a bigger attack surface than the one 

that is not. The presence of security mechanisms in a webpage reduces the size of the 

attack surface. These security mechanisms are often the input validation and 

Transport Layer Security. The http interface between a client and a web server sup-

ports a number of input dimensions, and an application with many dimensions will 

generally be more complex. The more complex an application is, the more vulnerable 

it becomes, hence a bigger attack surface. Active content on the other hand, affect the 

attack surface on the client side, where the user uses plug-ins or other side applica-

tions in place to add processes and code that do not reside on the server.5 The availa-

bility of cookies in an application has various implications to its attack surface. 

Cookies bring with them input paths into the application, where these cookies are of-

ten used to support session management and user authentication.  Cookies can also 

be used to track users, where they leave observable hints in the browser. All these pa-

rameters can an influence the size of the attack surface in either direction. Lastly, ac-

cess control is a compound parameter that has an influence on the size of the attack 

surface, and it reflects that a user has role and access rights to certain materials. Ac-

cess roles defines the user status and can assume one of the three values: 5, 6 unau-

thenticated, thus the user is not logged in or possible anonymous; authenticated, thus 

the user is logged and has a known identity; or the user is logged-in and has certain 

defined access rights. The parameter right reflects that a user can have the following 

access rights: none, limited, or full rights (i.e. root). All these parameters can either 

reduce or increase the size of an attack surface of an application. 

Attack Surface Size as a Form of Self-Advertising 

To learn how to design self-advertising attack surfaces, we must first understand how 

attackers find vulnerable applications on the web. Basically, attackers use search en-

gines to find vulnerable applications on the web. An example is when an attacker is 

looking for an instance of a web application with a special kind of vulnerability, and 

then uses a search engine to perform this special search request. In this case, the 

search engine would return a list of all potential victims of this particular vulnerabil-

ity. In this list (search results) of potentially vulnerable applications is where the 

honeypot should appear if the attackers are to find it. For the honeypot to appear in 

this search results it should also emulate vulnerable applications that were specified 

in the search. When attackers find these vulnerable paths (also known as dorks) to the 

honeypot, they are more likely to attempt to compromise them; and as such one of 



 Banyatsang Mphago, Dimane Mpoeleng, Shedden Masupe, and Oteng Tabona  

 

193 

the honeypot’s goals, which are to be identified by its targets, is realized. When the 

honeypot gets listed on the search results of vulnerable applications by the search en-

gine, search engine optimization determines where the honeypot is placed within its 

search results. The most relevant results to the search terms would be placed at the 

top of the list while the least relevant will be placed at the back of the list. This pro-

cess is often referred to as Search engine optimization (SEO), which is the process of 

improving the visibility of a website or a web page in a search engine results.  

Assuming that an attacker searched for vulnerable applications on the web and our 

honeypot got listed in the results, how can one make sure that the honeypot gets 

listed at the top of the results, or at least closer to the top? Thus, how can the Pag-

eRank of the honeypot be as high as possible so that attackers find the honeypot first 

rather than other vulnerable applications? Our argument is, in addition to the link 

structure analysis, the attack surface of the honeypot can be used to make the honey-

pot more visible to the attackers if the size of the attack surface is also factored in the 

PageRank system, and we call this self-advertising by the honeypot to its targets. A 

large attack surface of a system does not suggest a system has many weak points to 

attack but rather such a system is more vulnerable, thus it is easier to attack. A more 

vulnerable application is therefore attractive to the attackers; hence the honeypot gets 

the needed attention. 

The PageRank algorithm works by analysing the link structure of the web and then 

measure the authority of the pages based on those links. The goal behind PageRank 

system is to objectively measure the page’s importance as viewed by its users 

through link structure analysis. Users are interested in important pages (i.e. pages 

with high authority score). Important pages for attackers however, are not the same 

as important pages for other conventional web users. Attackers are looking for vul-

nerable applications on the web; therefore, vulnerable pages are important to attack-

ers. The PageRank system does not rate pages based on vulnerabilities they have, but 

rather, based on the link analysis structure. In this section we argue that because 

honeypots are more useful when attacked, in addition to the link structure analysis 

employed by PageRank system, an attack surface of a honeypot can be used as a fac-

tor that influences the PageRank of that honeypot. For web applications, an attack 

surface can simply be considered as the HTTP boundary of the server or web appli-

cation and the functionality running behind the server and accessible through that 

http boundary. 

For honeypots, having a large attack surface is desirable. The bigger the attack sur-

face an application has implies the ease at which that application can be exploited. A 

more exploitable system is a natural attraction to attackers. Therefore, maximizing 

the attack surface of honeypots suggests an increased importance of that application 



 Self-Advertising Attack Surfaces for Web Application Honeypots 

 

194 

to the attackers. Therefore, by combining the importance brought by the size of the 

attack surface with the link structure analysis employed by the PageRank system, we 

argue that the PageRank of a vulnerable application would increase if PageRank sys-

tem uses the size of attack surfaces to rank vulnerable applications. The more vulner-

able a honeypot is, the more useful it becomes when attackers want to take advantage 

of it. By strategically placing attack surface parameters on a web page of a honeypot, 

the attack surface of that honeypot can be maximized in either direction. 

Related Work  

A similar approach to our “Self-Advertising Attack Surfaces” proposition is the 

“Time-Authority Aware Ranking” proposed by Berberich et al.,7 where they propose 

a strategy for increasing the PageRank of a page, not based on manipulating out-links 

but rather based on the recency of information contained in pages. Berberich et al.7 

argue that the freshness of web content and the link structure are factors that should 

be taken into consideration in link analysis when computing the importance of a 

page. Therefore, they introduced two link analysis approaches named T-Link and T-

Link Light that take into consideration the temporal aspects freshness (i.e. 

timestamps of most recent updates), and activity (i.e. updates rates) of pages and 

links. 

Another strategy of increasing the PageRank of a page is known as Google bombing, 

discussed by Hamilton,8 where Google bombing is described as the activity of de-

signing internet links that will bias the search engine results so as to create an inaccu-

rate impression of the search engine target. In Google bombing, target pages are 

linked to by many different pages with the same link texts or key phrase, thereby as-

sociating the target with the key phrase in Google’s PageRank algorithm. Baeza-

Yates et al.9 also studied the impact of collusion, thus nepotistic linking on PageRank 

manipulation. In this paper Baeza-Yates et al.9 prove a bound on the PageRank in-

crease that depends both on the reset probability of the random walk ε and on the 

original PageRank of the colluding set. Thus, a group of nodes can collude to get a 

higher PageRank by manipulating out-links of the group. 

Proposed Framework 

Approach 

In measuring the attack surface of our application, we selected CVSSv3 (the latest 

version of CVSS) framework to use as our security metric, mainly because as argued 

by Markowsky,10 there is no best metric out there. We therefore regarded the results 

obtained as estimates of the security level of the application rather than the actual 

security level. Our goal is to find out by how much the attack surface parameters 

increase the size of the attack surface of an application when strategically placed, 



 Banyatsang Mphago, Dimane Mpoeleng, Shedden Masupe, and Oteng Tabona  

 

195 

therefore, the luck of perfect security metric is not a hindrance to achieving our goal. 

Nessus vulnerability scanner uses CVSSv3 as its security metric in its current 

version, and as such, Nessus is the tool of choice in estimating the attack surface of 

our application. 

An application’s attack surface measurement does not reflect the quality of the code 

of an application, and as such an application with a bigger attack surface does not 

necessarily mean it has many vulnerabilities and vice versa, but instead, a larger 

attack surface measurement reflects that an application is likely to be exploited with 

little effort and cause more damage to it.11 So, does the quantity of attack surface 

parameters increase the attack surface of an application, or only a few have a 

significant influence towards the size of the attack surface of an application? Which 

attack surface parameters have a greater contribution to the size of the attack surface 

of an application? Does incorporating all attack surface parameters at once in an 

application make it have a bigger attack surface than having a selected few?  

To answer all the questions above, we compare the attack surface of Glastopf by 

using four different web templates. Our main focus is to find out how much metrics 

does the contents of a web template brings to the overall attack surface of the 

application. First, we created a simple html page, supplied it to Glastopf and then 

measure its attack surface. By definition, this setup should return the smallest attack 

surface mainly because the templates contain almost nothing that contributes to the 

size of the attack surface. A simple and pure html page with text and images only as 

its content will produce a small attack surface than a page with more parameters such 

as forms, dynamic content, cookies, etc. as its contents. The original Glastopf 

templates are purely dynamic. A script fetches data from a text file and populates the 

template with that text. However, there is presence of forms in the original templates 

which according to Goswami et al.6 and Manadhata and Wing 12 contributes to the 

size of the attack surface. At this moment, we already know that two attack surface 

parameters will have an effect on the size of the attack surface of Glastopf, but by 

how much is not really known. Thus, the difference in the values we get from the 

plain template and the original Glastopf templates should reflect how much attack 

surface metrics the forms and dynamism brought to the application.  

The third template contains the attack surface parameters as defined by Goswami et 

al.6 and Manadhata and Wing.12 All the attack surface parameters are included in the 

template and then its attack surface measured. The idea is to find out which 

parameters contribute most to the size of the attack surface of the application. Since 

the objective is to increase the attack surface of the application, once the parameters 

that contribute most to the size of the attack surface are established, then the best 

possible ways of deploying those parameters in a template would be determined. 



 Self-Advertising Attack Surfaces for Web Application Honeypots 

 

196 

Thus, do we have to duplicate the attack surface parameters in our application, or 

does duplicating parameters lower the attack surface measurement, or it has no effect 

at all? 

The last template contains all the parameters selected in the previous approach 

(template 3), but now they are implemented in a content management system (CMS) 

template. This approach tries to increase the attack surface of an application by 

bringing content-based package dependency into play. Vulnerabilities on highly 

dependent packages usually bring larger attack surfaces compared to those detected 

on a client application, even when they have the same CVSS scores,13 and CVSSv2 

does not reveal that fact. Thus, by bringing CMS content-based package dependency 

vulnerabilities to Glastopf, the attack surface of this application would increase even 

though that may not reflect in CVSSv2 score. However, for the use of CMS to be 

successful in this application, there is a need for interfacing Glastopf with wordpress, 

which will be discussed in our next paper. 

Observations 

In this research, we use attack surface parameters as suggested by Heumann, Türpe, 

and Keller 5 and Goswami et al.6 to find out by what capacity they contribute to the 

attack surface. Our goal is to maximize the size of our attack surface on a dynamic 

web application honeypot such as Glastopf, thereby increasing its chances of gaining 

more attention from the attackers. However, the degree of distribution attack surface 

parameter was not tested in our application. This is neither because it is of little sig-

nificance to the size of the attack surface, but rather, because our experimental setup 

was not in a public domain where such distribution setup can be tested. We were also 

unable to test access control parameter because our application can only be accessed 

on privileged rights, thus sudo rights. It is worth noting that the measurement shown 

by the scanner does not reflect the number of vulnerabilities in an application but ra-

ther the ease or difficulty at which the application can be exploited. The bigger the 

number reflected by the scanner, the easier the application is to exploit. 

Using Nessus vulnerability scanner to measure our application’s attack surface, our 

plain html template produced the smallest attack surface, and by definition, it was the 

expected results. A total of 71 were shown by the scanner. However, Glastopf has 

several vulnerabilities which it emulates, so from this reading and looking at the vul-

nerabilities shown by the scanner, we can safely say the majority of this attack sur-

face measurement was coming from Glastpof’s emulated vulnerabilities rather than 

the template itself.  

On the plain html template above, we then introduced one attack surface parameter, 

the form, and measure the attack surface again. The presence of security mechanisms 

in an application reduces the attack surface of the application. Since our goal is to in-



 Banyatsang Mphago, Dimane Mpoeleng, Shedden Masupe, and Oteng Tabona  

 

197 

crease the attack surface of Glastopf as much as possible, we then created our form 

without any input validation or security mechanism. The attack surface of the appli-

cation now increased to 74, which means the form, increased the attack surface by a 

value of 4. We then created another form in the application, without any input valida-

tion or security mechanism just like the first form. This was to test if duplication of 

the same attack surface parameter affects the size of the attack surface. The reading 

in the scanner didn’t change, thus, the attack surface measurement remained at 74. 

From this test, we can safely say duplication of the same attack surface parameters in 

a single web template does not affect the attack surface of an application. 

In the next test, we created our template using the Jinja2 templating language. By do-

ing this, we have now transformed our plain html template into a fully dynamic web 

template. The reading from the scanner was now at 102. Thus, the dynamism of the 

template has now increased the attack surface of the application by a value of 28. 

This reading was also achieved when scanning Glastopf with its original templates. 

So, from this test, we can safely say that the original Glastopf templates has only 2 

attack surface parameters, which is presence of forms and dynamic page creation. 

Secondly, we can conclude that dynamic page creation increases the attack surface 

by a bigger magnitude than just html forms.  

In the next test, we then introduced cookies in our dynamic web template. First, we 

created static cookies in the template. A static cookie is the one whose cookie data is 

not changeable, and is mostly created from html only. The purpose of a static cookie 

test was to find out if dynamism in the cookie will affect the results as it was the case 

with the webpage template and by how much. In this test, our scan results value in-

creased by 2. We then created a more complex cookie by making it dynamic using 

jScript. The scan results showed that the value increased by 4 from the previous test. 

From this test, we can safely say the more complex the cookie is; the bigger it con-

tributes to the size of the attack surface on an application. 

Another parameter that is known to increase the size of the attack surface of an appli-

cation on the client side is active content. Active content basically refers to interac-

tive or dynamic content in a webpage, which include programs such as javaScript 

applications, activeX aplications, animated images, stock tickers, internet polls, ac-

tion items, streaming video and audio, weather maps, embedded objects, and many 

more. In this test, we first created an embedded object; a flash object in our template, 

and then scan the surface. The scanner recorded an increase in the size of the attack 

surface by a value of 2. Then we embedded a streaming YouTube video into our web 

template and measure the surface. The objective was to find out if having different 

active content in the page would increase its attack surface as opposed to having just 

one. The results did not change from the previous test. We then included a poll, first 



 Self-Advertising Attack Surfaces for Web Application Honeypots 

 

198 

without submitting any information to the database, and then changed our poll to 

start submit the poll results to the database. However, the database has been pre-

existing to the application, but we just modified it to store the poll results. The size of 

the attack surface did not change from the previous test when it is not submitting the 

poll results to the database, and increased by 3 when it is submitting to the database. 

On the last test in active content, we created a news feeds in the template and then 

scan the surface, and the size of the attack surface increased by a value of 5.  

The diagram below shows a summary of how different attack surface parameters af-

fect the size of Glastopf relative to the original or un-edited Glastopf web application 

honeypot. 

 

 

Figure 2: Effects of Attack Surface Parameters on Honeypot.  

Discussion 

This research sets out to explore how one can maximize the size of an attack surface 

of a dynamic web application honeypot so that it becomes more interesting to the at-

tackers out there looking for what to attack. In particular, the research uses the attack 

surface parameters that have been identified to have an impact in the size of the at-

tack surface of an application.5, 6 Thus, how can one use attack surface parameters to 

get the biggest attack surface in a web template? The attack surface of a web applica-



 Banyatsang Mphago, Dimane Mpoeleng, Shedden Masupe, and Oteng Tabona  

 

199 

tion is not only contributed by the web template but the entire application itself. In 

this research, we were concerned with how the web template impact on the size of a 

web application attack surface if these parameters are deployed in a particular way.  

So, the question may be: what is a large or a small attack surface of an application? 

In our case, we measure our attack surface relative to the original Glastopf’s attack 

surface. In formal descriptions,14 says an attack surface of system A is larger than 

that of system B given that 

An environment , the attack surface , of a 

system A, is larger than the attack surface , of a system B, iff: 

i.  

ii.  

iii.  

Where U,D,T are elements of a system’s environment to mean the user of the system, 

the data stores of the system, and the communications channels of the system, and 

M,C,I are the elements of an attack surface of a system to mean the entry and exits 

points of a system, set of channels used by the system, and untrusted data items in the 

system. In our case, the attack surface elements are the actual attack surface parame-

ters we used to model our system’s attack surface. 

The above proposition says the attack surface of system A is bigger than the attack 

surface of system B if and only if; i) the entry and exit points of system B are a sub-

set of system A where else the communication channels and untrusted data items of 

both systems are the same, or, ii) the set of channels use d by system B is a subset of 

channels used by system A where everything else is the same, or iii) the untrusted da-

ta items for system B is a subset of untrusted data items for system A where every-

thing else is the same.   

Krautsevich et al.11 give another formal description on the size of attack surface: 

Let XA be a set of attackers relevant for system A, and XB be a set of attack-

ers relevant for system B. We say that system A is more secure than or equal 

to B ( if , where: 

 



 Self-Advertising Attack Surfaces for Web Application Honeypots 

 

200 

 

The principle above says that if a set of possible attacks on one system is larger than 

a set of attacks on another system, then the later system is more or at least equally se-

cure than the former one. In our tests, we deployed our attack surface parameters in 

different arrangements, and also introduced attack surface parameters that were ini-

tially not present in Glastopf. From these tests, we found that deploying two identical 

attack surface parameters in a web application does not affect the size of its attack 

surface. If for example, you have a form in your web template, having another form 

of the same type would not increase nor decrease the attack surface of your applica-

tion. In the table below, we outline an algorithm that one can use to decide whether 

to include a certain parameter in the application web template. 

Table 1: Adding Parameters to the Template to Increase the Attack Surface 

Algorithm 1:  Add parameter to the template 

1:     Function Add_Parameter (bolean exist)             

2:     While exist == true { 

3:              If ( )                                           : A is a superset/ includes B 

4:                 Then ( )                                : B is more secure than A, 

therefore won’t increase AS 

5:                   Add_Parameter() = false 

6:               Else Add_Parameter() 

7:     If exist == false 

8:      Add_Parameter() 
 

The algorithm says, when you decide to include a parameter in the web template of 

an application so as to increase its attack surface, first check if that parameter does 

exist. In the table above, we assume that pA is the existing parameter and pB is the 

parameter to be added to application template. If the parameter does exist, check if 

the functionality and the elements of that functionality are the same as the existing 

parameter. Line 3 in the algorithm says if parameter A is a superset of parameter B, 

then parameter B is more secure than parameter A (line 4), therefore parameter B 

will not increase the attack surface of that application hence no need to include in the 

application. If the parameter doesn’t exist in the application (line 7), then adding it 

would automatically increase the size of the attack surface.  

Our research also found that different attack surface parameters increase the size of 

the attack surface with varying degrees. For example, in our research we found that 

the dynamic web template design has a bigger effect in the size of the attack surface 

compared to all other parameters tested. These suggest that when the aim is to in-



 Banyatsang Mphago, Dimane Mpoeleng, Shedden Masupe, and Oteng Tabona  

 

201 

crease size of the attack surface of a web application, having a dynamic web template 

would be an obvious choice over a static template. The more complex the application 

becomes the bigger the attack surface it would have. By adding an attack surface pa-

rameter that is either not existing to the application template or it is existing but has 

either different functionality or different elements would always increase the size of 

the attack surface of an application. But increasing the complexity of that functionali-

ty by either adding elements such dynamism and third party interactions will increase 

the attack surface further. 

 

References 
 
1 Iyatiti Mokube and Michele Adams, “Honeypots: Concepts, Approaches and Challenges,” 

Conference Proceedings of the 45th Annual Southeast Regional Conference (Winston-

Salem, North Carolina, USA, March 23-24, 2007): 321–326, https://doi.org/10.1145/12333 

41.1233399. 

2 Lance Spitzner, Honeypots: Tracking Hackers (Boston, MA: Addison Wesley, 2002). 

3 Mathias Gibbens and Harsha vardhan Rajendran, “Honeypots,” (April 2012), 1–12., availa-

ble at https://www2.cs.arizona.edu/~collberg/Teaching/466-566/2012/Resources/ 

presentations/2012/topic12-final/report.pdf. 

4 ENISA, “Proactive Detection of Security Incidents – Honeypots,” (2012): 181. 

5 Thomas Heumann, Sven Türpe, and Jörg Keller, “Quantifying the Attack Surface of a Web 

Application,” in ISSE/Sicherheit 2010: Information Security Solutions Europe, Sicherheit, 

volume P-170 of Lecture Notes in Informatics (LNI) (Bonner Köllen: Verlag, 2010): 305-

316.  

6 Sumit Goswami, Nabanita R. Krishnan, Mukesh Verma, Saurabh Swarnkar, and Pallavi 

Mahajan, “Reducing Attack Surface of a Web Application by Open Web Application Secu-

rity Project Compliance,” Defence science journal 62, no. 5 (2012): 324–330, 

https://doi.org/10.14429/dsj.62.1291. 

7 Klaus Berberich, Michalis Vazirgiannis, and Gerhard Weikum, “Time-Aware Authority 

Ranking,” Internet Mathematics 2, no. 3 (2004): 301-332. 

8 Peter A. Hamilton, “Google-bombing – Manipulating the PageRank Algorithm,” CMSC 

676 - Information Retrieval (2013): 1–5, available at https://pdfs.semanticscholar.org/ 

2bce/4885f4d27923acc283af760027cec94ccbdf.pdf. 

9 Ricardo Baeza-Yates, Icrea-univ Pompeu Fabra, and Carlos Castillo, “Pagerank Increase 

under Different Collusion Topologies,” in Proceedings of the Workshop on Adversarial IR 

on the Web (2005), 25-32, available at http://airweb.cse.lehigh.edu/2005/baeza-yates.pdf. 

10 George Markowsky, “The Metric at the End of the Rainbow,” in The TIEMS USA 2017 

Annual Conference Emergency Management, Homeland Security, and Computing, 2017. 

11 Leanid Krautsevich, Fabio Martinelli, and Artsiom Yautsiukhin, “Formal Approach to Se-

curity Metrics. What Does ‘More Secure’ Mean for You ?” Proceedings of the Fourth Eu-

ropean Conference on Software Architecture, Copenhagen, August 23-26, 162–169, availa-

ble at https://doi.org/10.1145/1842752.1842787. 



 Self-Advertising Attack Surfaces for Web Application Honeypots 

 

202 

12 Pratyusa K. Manadhata and Jeannette M. Wing, “An Attack Surface Metric,” IEEE Trans-

actions on Software Engineering 37 no. 3 (May-June 2011): 371–386. 

13 Su Zhang, Xinwen Zhang, Xinming Ou, Liqun Chen, Nigel Edwards, and Jing Jin, “As-

sessing Attack Surface with Component- Based Package Dependency,” in Network and 

System Security, Lecture Notes in Computer Science, vol. 9408 (Springer, Cham: NSS, 

2015), https://doi.org/10.1007/978-3-319-25645-0_29. 

14 Pratyusa K. Manadhata and Jeannette M. Wing, “A Formal Model for A System’s Attack 

Surface,” in Moving Target Defense: Creating Asymmetric Uncertainty for Cyber Threats 

(2011): 1-29, https://doi.org/10.1007/978-1-4614-0977-9_1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

About the Authors 

The author of this article are with the Botswana International University of Science 

and Technology and the Botswana Institute of Technology, Research and Innovation.  


	Introduction
	Background
	Attack Surfaces in Web Applications
	The Attack Surface Parameters

	Attack Surface Size as a Form of Self-Advertising
	Related Work
	Proposed Framework
	Approach
	Observations

	Discussion
	References
	About the Authors

